根号7等于多少?是2.6457513110646的。关于根号7等于多少以及根号7等于多少?,根号7等于多少化简,根号7等于多少分数,根号8等于多少,根号6等于多少等问题,小编将为你整理以下的知识答案:
√7的值怎么算
√7等于2.64575131106459。
根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
根号7等于多少
是2.6457513110646的。
7^(1/2)=2.6457513110646。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数的另一特征是无限的连分数表达式。
无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
无理数是指实数范围内不能表示成两个整数之比的数。
简单的说,无理数就是10进制下的无限不循环小数,如圆周率。
根式乘除法法则
1、同次根式相乘(除),把根式前面的系数相乘(除),作为积(商)的系数;把被开方数相乘(除),作为被开方数,根指数不变,然后再化成最简根式。
2、非同次根式相乘(除),应先化成同次根式后,再按同次根式相乘(除)的法则进行运算。
根式的加减法法则:各个根式相加减,应先把根式化成最简根式,然后合并同类根式。
二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。
在根式的加减法中,同类根式要合并。
一般地,几个根式总可以化成同次根式,但不一定能化成同类根式。
根号的历史转变
古时候,埃及人用记号“┌表示平方根。
印度人在开平方时,在被开方数的前面写上ka。
与此同时,有人采用“根字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方一字的第一个字母q,或“立方的第一个字母c,来表示开的是多少次方。
例如,中古有人写成R。
q。
4352。
数学家邦别利(1526~1572年)的符号可以写成R。
c。
?7p。
R。
q。
14╜,其中“?╜相当于括号,P(plus)相当于用的加号(那时候,连加减号“+“-还没有通用)。
直到十七世纪,法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄。
在一本书中,笛卡尔写道:“如果想求n的平方根,就写作,如果想求n的立方根,则写作。
有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。
立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号的使用,比如25的立方根用表示。
以后,诸如√ ̄等等形式的根号渐渐使用开来。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。
根号7等于多少怎么算
根号7等于2.64575……,
可以用手开平方根的方法,
1. 每两位分一节(从小数点起),从最高节逐节试根。
之所以两位一节,是因为100(两位)是10(一位)的平方;
2. 当从最高节试出根的最高位,将根的最高位平方与最高节相减,其余数与下一节组成新数,用来试根的第二位;
3. 由于根的第一位已经确定,也就是10a+b中的a已经确定,现在就是要确定b;
4. (10a+b)的平方是100a*a+(20a+b)*b,而100a*a已经被从最高节中减掉了。
因此对于余下的新数,只须试出最接近的(20a+b)*b。
这就是乘以20的原因!
5. 确定了b,接下来,再次相减,即把刚确定的(20a+b)*b减掉,从而再次获得新余数。
然后再次将已经确定的根数前两位乘以20,即(10a+b)*20,加c,与c相乘,用来试出使乘积〔即(20(10a+b)+c)*c〕最接近新数的c;
6. 周而复始,确定d、e、f……
&
&
&
&
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站(www.zengtui.com)有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 5735363@.com 举报,一经查实,本站将立刻删除。
版权声明:本文内容由作者小仓提供,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至907991599@qq.com 举报,一经查实,本站将立刻删除。如若转载,请注明出处:http://www.cangchou.com/200673.html